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Abstract 
 

Over the course of the semester, team Clevis and Boathead was tasked with designing 
and developing an autonomous boat that could complete three different tasks in the Charles 
River. These three different tasks were: 1) travel in a straight line at a constant heading and a 
constant speed, 2) travel in a closed circular path at constant speed with a radius centered around 
GPS point, and 3) travel autonomously approach a buoy, make a U-turn around the buoy and 
return to the same location along the dock. 

By carefully developing the mechanical, electronic, and control systems, we were able to 
successfully complete the first task, and complete the second task with some errors. We 
attempted to complete the third task, but due to time constraints, were unsuccessful. For the most 
part, the project was a success because of our sturdy mechanical design and secure electrical 
connections. Although not all of the tasks were completed, we also obtained valuable data from 
tasks 1-3, which will be analyzed at length in this document. 
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Introduction 
 

We were tasked with designing and developing an autonomous boat that could complete 
three different tasks in the Charles River. These three different tasks were: 1) travel in a straight 
line at a constant heading and a constant speed, 2) travel in a closed circular path at constant 
speed with a radius centered around GPS point, and 3) travel autonomously approach a buoy, 
make a U-turn around the buoy and return to the same location along the dock. 

Mechanically, our boat adopted a simple design, which was facilitated by the components             
provided to us in a kit. The sensors we chose to aid us in navigation and maneuvering include a                   
9-axis IMU and a GPS. To estimate position and velocity of the boat, measurements from the                
GPS and IMU were combined in a Kalman filter algorithm. These state estimates were used both                
in the real time feedback control algorithms as well as for data logging to characterize the boat’s                 
performance of each task. 

Figure 1. Photograph of our boat and all of its components. Later            
pictured: the boat with a trash bag on top, which helped prevent            
water from getting inside. It should be noted that the boat is three             
feet long. Asterisks in the labels denote that there are two of said             
component, but only one was called out for the sake of clarity in             
this diagram. The second copy of each component with an asterisk           
is positioned on the opposite side of the boat for proper balancing. 

 
Pictured above (Figure 1) is an overall view of our boat and all of its components. We                 

will go more in depth about each component in Section 3, Mechanics, but noteworthy overall               
components include our rudder actuation system, propulsion system, ballast methods, and           
electronics configuration. 



 
4 

There were several static and dynamic forces that we expected to act on our boat. We had                 
to consider these in order to properly stabilize, calibrate, and maneuver our boat within our code. 

Some of the static forces that we expected to act on our boat included gravity and the                 
buoyancy force of our boat. Some of the dynamic forces that we expected to act on our boat                  
included currents, wind, and waves in the Charles River. The boat also experienced a Munk               
moment due to the asymmetry of the stagnation points, which acted to turn the vehicle               
perpendicular to the flow. All of these forces worked against our boat, and had to be accounted                 
for when implementing our feedback control.  

Testing in a natural landscape such as the Charles River comes with its own set of                
challenges and uncertainties. The conditions and weather can vary minute-to-minute, so our            
mechanical components, sensors, and algorithms needed to be robust enough to account for these              
potential extremes and variations. More specifically, heavy rain and wind, strong currents,            
substantial waves produced by larger boats, and aggressive geese were all potential hazards that              
we had to account for. When we were testing, there were strong winds, which made the waves                 
larger. As a results, we had waterproofing concerns (several times, waves crashed over the boat),               
but these were mitigated using a double-ply trash bag sealed with duct tape. The waves also                
made controlling the boat more difficult, as it caused strain on the rudders, causing the boat to                 
sail off course.  

 
Team Organization 
 

In order to deliver on time and to specification, it was important that our team develop an                 
organized plan of attack. We started by creating a Gantt chart for each subtask of each subsystem                 
(mechanical, electronic, and control systems). By outlining a general timeline and milestone            
dates, our team was kept on track and working at an appropriate pace to deliver on time. 

For the division of labor, Dayna and Bailey were the mainly in charge of the mechanical                
structuring and components of the boat, Ryan was mainly in charge of the electronics and               
sensors algorithms associated with the boat, and Ty was mainly in charge of the control systems                
and algorithms necessary for us to complete our tasks. 

This division of labor stayed rather constant throughout the semester. If anything changed             
organizationally, it was when we accomplished certain benchmarks; some of these subtasks were             
accomplished a few days later than we had originally planned for. However, because we planned               
time for unforseen hitches, pushing back the completion date for some of these subtasks was               
acceptable and did not interfere with the completion of our end goals. By setting the benchmark                
and subtask dates for our Gantt chart during two separate “sprints,” we were able to avoid a large                  
pushback or propagation of error because we did not unrealistically set all of our dates seven                
weeks out, allowing less time for all dates to be pushed back.  
 
Mechanical Design 
 

Our team chose to keep the mechanical design of our vessel simple and compatible with               
the kit materials we were given in the interest of time. We used two each of: propellers, motors,                  
12V batteries, stuffing tubes, and rudders. We had two decks: one on which the motors sat, and                 
one that the waterproof servo controlling the rudders was attached to. For ballast, we used small                
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4-lb bags of lead pellets, and for waterproofing, we had a small plastic avionics box that could be                  
screwed shut, and covered the boat with a trash bag sealed with duct tape while testing.  
 
Rudder Assembly and Struts 
 

 
Figure 2. Snapshots of the fixation of the rudders to the hull and             
the actuation of the rudders by the servo. 

 
 Starting with the back of our boat, we installed the fixed rudder pipe tubes to be the only                  
cuts made in the back of the boat (Figure 2, right). This way, the projected area cut out to the hull                     
is smaller (a small pipe rather than the large, oblong contour of the rudder). Less area cut out of                   
the hull means there is less of an opportunity for water to leak into the boat. The fixed rudders                   
were attached with epoxy, and later reinforced with more epoxy. 

Both rudders were controlled by a single servo, which allowed for extra consistency in              
both rudders. The rudder coupling system utilizes two pushrods to connect the two rudders to be                
geometrically coupled (Figure 2, left). The use of four clevises facilitates connecting the servo              
horn, to the rudder arm of the first rudder, to the rudder arm of the second rudder. 
 

 
 

Figure 3. Snapshots of the strut spacing and overview of the lower            
and upper decks. 
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As pictured above in Figure 3, the struts were placed a reasonable distance away, as to                
properly space the propellers close enough to the rudders and close enough for the connectors for                
optimal motor turning.  
 
DC Motors and Propellers 

Also pictured in Figure 3 on the left, our team elected to use two motors and no bow                  
thruster. We did not think the bow thruster would be necessary, and we believed that we could                 
accomplish the kind of stability and maneuvering required for our three tasks via only two               
motors and two rudders. This picture on the left in Figure 3 also shows our lower and upper                  
acrylic decks. The lower deck holds the two motors and 5V regulator (setup pictured previously               
in Figure 1), and the upper deck holds the servo actuation system (as shown in Figure 2, right                  
panel). Both decks were laser cut and attached to the hull with epoxy. They had to be reinforced                  
with flexible epoxy because as we moved the boat around, there was a creaking noise that                
suggested that there was strain between the platform and the fiberglass hull. This did not end up                 
being a concern later on.  

The motors were mounted to the acrylic platform via screws, but because of initial              
alignment issues that we had (the motor shafts were epoxied in but the connectors were jamming                
because the inner shaft was too far up), we had to drill new holes in order to place one of the                     
motors further back. This was definitely one of the most tedious tasks of the project from the                 
mechanical end. One of the motor oil tubes in the shaft fell off, so we used metal epoxy to                   
reattach it. Additionally, once the motors were realigned, after testing the boat in the tank in the                 
lab, we realized that one of the motors was spinning such that the propeller was being loosened,                 
so we had to adjust that by switching the connections between the ESC and the motor and adding                  
Loctite to ensure a strong bond.  
 
Electronics 
 
Schematic 
 
Figure 4 shows a complete schematic of the electronic system used on our boat.  
 
Control Computer 
We used an Arduino AtMega 2560 to control the IMU, GPS and servo. We originally considered                
using an Arduino Uno as well, but found this unnecessary and stuck with a single               
microcontroller. The Arduino was housed in our avionics box, along with the rest of the sensors.                
Every time a task was attempted, either the new code was uploaded to the Arduino, or (in the                  
case of simply attempting the task again without the need to modify the code) the reset button on                  
the Arduino was pressed. Overall, the Arduino proved to be a simple and successful choice that                
interfaced well with the sensors.  
 
Power System 
Two 12V lead-acid batteries were connected in parallel to power the motors and ESCs.We used a                
fuse in between each ESC and the PWR side of the battery for protection. In addition, we had a                   
power bus inside the avionics box that had all of the PWR connections on one side, and the GND                   
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connections on the other so that they would not only be safely separated, but easily connected to                 
the other components requiring power and everything that needed to be grounded.  
A 5V regulator was used to convert the power from 12V to 5V for the servo controlling the                  
rudders, the relay and the receiver. The batteries were connected to the power bus via crimp                
connections, which made them easy to remove. This proved useful for debugging (originally we              
had some smoke from the motor because of some less-than-ideal connections that were later              
cleaned up, and it was helpful to be able to easily remove the battery connections).  
 

Figure 4. Schematic of electronic components, including the Arduino microcontroller, GPS,           
IMU, receiver and relay, 5V regulator, servo, ESCs, motors and batteries.  
 
Actuators and Driver Circuits 
We used a single waterproof servo to control both rudders, whose SIG line was connected to the                 
COM line of the 8-channel relay. (see above schematic) The ESCs were connected to the motors                
and to the power bus, and their SIG lines were also connected to the relay. This allowed for easy                   
simultaneous switching between autonomous control of the ESCs and servo and manual RC             
control.  
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Radio Control System 
 
Radio-Controlled Relay for Backup Control of Boat 
 

While the boat was designed to be controlled autonomously while performing tasks, it             
was necessary to include a safety mechanism to allow the autonomous control to be overridden               
by radio control. Because a docking procedure was not ultimately included in the control scheme               
for the boat, radio control is necessary to allow the boat to return to the dock without manually                  
retrieving it from the middle of the Charles river. In addition, because the boat is operating in an                  
environment with other aquatic vehicles and collisions are a possibility, a manual override             
feature is crucial for ensuring the safety of other vehicles and people on the water. 

The relay circuit implemented in the boat used a Pololu RC Switch with Relay and               
SainSmart 8-Channel 5V Relay Module. By combining these components as shown above in             
Figure 4, relay switching of all actuators in the boat was controlled by toggling a switch on the                  
radio controller. When the relay switch is turned off, all actuators receive command (PWM)              
signals from the radio receiver. When the relay is switched on, the actuators receive signals from                
the Arduino microcontroller to perform the desired autonomous task. The choice was made to              
make the boat radio controlled when the relay switch is turned off. This decision served as                
another safety precaution such that the boat could still receive radio signals in the event of a                 
connection failure in the relay mechanism.  
 
Algorithm Software 
 
Algorithms for accomplishing tasks 1-3 
 

Task 1 simply implemented the PID code setting the boat to stay at a constant speed and                 
heading. The desired heading was chosen arbitrarily, the desired speed was 1 m/s as the               
controller design was linearized around this speed. 

The algorithm for accomplishing task 2 worked by first having the boat drive 30 m away                
from the dock. Upon reaching this distance it set a center point a distance R directly                
perpendicular to its current heading. It then circled around this point. Originally this point was               
suppose to be set to be on the starboard side of the boat, but as we will discuss later is was                     
moved to the port side. After setting this point the boat used an on-off controller to circle the                  
center point it set, at a constant radius R. When the boats absolute distance from the center point                  
was great than R the boat turned inward toward the center point. When the absolute distance to                 
the center point was less than or equal to R the boat went straight. In the second iteration it                   
turned slightly outward in this regime as we thought it might better maintain a constant radius                
this way. Figure 5 shows a simple state diagram for this algorithm. Figure 6 shows a visual                 
representation of the algorithm. 
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Figure 5: State space diagram for accomplishing task 2. Code          
worked like an off-on controller, sending the boat strait if it was in             
or on the circle and turned the boat inward if it was out of the               
circle. R is the distance of the boat to the circling point. R_Desired             
is the rotating radius.  
 

 
Figure 6: Visual representation of how the algorithm for task 2           
functioned.  

 
The algorithm for accomplishing task 3 involved two separate algorithms.          

The first part plotted a course around the buoy. Given the buoy’s general location              
the algorithm set 4 points around the buoy in a 20 by 20 m square as well as a                   
point at it’s starting location. This would be the path for the boat to travel. The                
boat would go to each point of the square and then back to the starting position.                
Figure 7 depicts a visual representation of the algorithm.  

The second algorithm for task 3 was used to get the boat to the desired               
points set by the the first algorithm for task 3. The desired heading could be               
calculated by taking the inv tangent of the slope between the desired point and the               
current location. The PID controller could then be used to achieve this desired             
heading. Once the boat had moved slightly the desired heading would be            
recalculated and plugged back into the PID controller. This process would           
continue such that boat should always want to point at the desired point.             
Eventually if the boat enter a zone close enough to the point, in this case a box 6m                  
by 6m around the point it would check the point off and then proceed to the next                 
point set by the first algorithm for task 3. This whole process is visually depicted               
in Figure 8. 
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Figure 7: Above is a visual representation of the navigation          
algorithm for rounding the buoy in task 3. Given the general           
location of buoy the algorithm plotted a path with four way points            
around it. 

 
Figure 8: Above is a visual representation of the navigation          
algorithm for getting to a desired way point. Based on the position            
of the point and the boat position the desired heading was set.            
Once the boat enter the “goodzone”, was within a certain distance           
of the point, it checked the point off and proceeded to the next             
desired point. 
 

One of the most significant issue that the algorithms ran into was that the GPS coordinate                
system and the compass heading did not line up in a standard manner. The GPS coordinate                
system had positive Y going North and positive X going East. Based on this and the right hand                  
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rule, East should have corresponded with 0 degrees and north with 90 degrees. In actuality North                
corresponded to 0 degrees and the degrees rotated clockwise such that East was 90 degrees. This                
meant that if the algorithm chose a desired heading of 20 degrees based on the algorithm                
described above for task 3, the actual desired heading needed to be 70 degrees. In the second                 
iteration of the the algorithms for tasks 2 and 3 accounted for this angle shift. This is also why                   
task 2 was changed to rotate to the left rather than right because this angle shift flipped the                  
location of 90 degrees, since the heading rotated clockwise. 
 
Control Systems Software 
 
PID control 
 

The speed and heading of the boat where controlled using feedback control systems. PID              
was chosen as it was the standard controller for physical system of this nature. Both systems                
required integral gain to deal with outside disturbances and derivative gain to smooth the              
oscillatory behavior introduced by integral gain. Proportional gain is needed for any control             
system. The diagram below in Figure 9 shows how the PID control was implemented in the code                 
for speed control. As is standard of PID code there are 3 gains, Kp, Ki, and Kd corresponding to                   
proportional, derivative and integral control. These gain are multiplied by the error, the sum of               
the error over time, and the instantaneous derivative of the error. The last two are found                
discreetly using a time step dt. These 3 terms are then summed to get the controller output which                  
for speed was throttle angle and for heading was rudder angle. Green boxes show added features                
to the PID code. A smoothing filter was added on the derivative control as it was very                 
susceptible to noise and had a high likelihood of spiking which would saturate the controller.               
Wind-up prevention was added to the integral control. This prevented it from becoming too large               
or building up in certain situations, such as if the boat was turned on but still sitting on the dock.                    
Once all the control was summed it was limited to a range to prevent over saturating the                 
controller. In the case of speed the throttle only went from 0 to 90, and for heading the rudder                   
angle could only move a max of 30 degrees in either direction. 

 
 

Figure 9: PID code structure for controlling speed. Green blocks          
indicate added features. Heading PID code worked in roughly the          
same manner 
 

The PID code for heading worked almost exactly like the code for speed,             
except there was an additional feature added to correct the error. At first if the               
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boat was headed at 270 deg and the desired heading was 0 this would output and                
error of -270.. This was fixed such that the boat never could have a error with an                 
absolute value greater than 180 and would instead turn the opposite direction if             
this occurred. In this case the error would be 90 instead of -270.  

 
 

Figure 10: Structure of error correction code used in the heading           
PID controller. Code made sure the boat always turned in the           
direction of minimum rotation toward the desired heading 

 
 Simulink Modeling 
 

In order to choose appropriate gains for the PID controller simulink models where             
created in matlab for the speed and heading of the boat. The models can be seen in the appendix.                   
To create these simulations the transfer functions for the speed and heading of the boat where                
estimated. This involved making approximations for the drag force added mass in the forward or               
x direction and rotational drag, moment of inertia and added moment of inertia in the z direction.                 
For this the boat was approximated as box with the dimensions of the boat. Obviously this lead                 
to very rough estimations that overestimated drag force and added mass. To account for this both                
the factors were usually decreased by a factor of 30-50%. The drag force was proportional to                
speed squared or rotational speed squared which is nonlinear and can’t be easily simulated. To               
account for this the drag terms were linearized around an equilibrium speed or equilibrium              
rotational rate. Using the mass and drag terms in a force balance and then taking the laplace                 
transform the transfer functions for speed and heading were found.  

Once the systems for the speed and heading had been estimated the relation between the               
controller and the physical control output also had to be estimated. For speed this involved               
relating throttle angle to thrust. To do this the boat was run at varying constant throttle ranging                 
from 0 - 80 degs and the force of holding the boat in place was measured to get thrust. The data                     
for this experiment can be been below. Based on this there was approximately 0.18N/deg of               
throttle.  

For heading the rudder angle needed to be related to torque applied to the boat. To do this                  
the lift force on the rudders and the distance of the rudders to the center of mass where                  
approximated. The lift was approximated using the equation (i). 
 

 R(A⍴Bv /2)ɸT =  2 (i) 
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Figure 11: Test results measuring thrust at different throttle         
angles. This was used to relate control output to force on the boat             
for the simulink model and get gains of the correct magnitude. 

 
T is the Torque from the rudders, R is the distance to the center of mass. A is the area of                     

the rudder, is the density of water, B is a constant, in this case, related to lift, and is the  ⍴                       
angle of the rudder. This formula is a valid approximation for lift force with small angles, B and                  

together account for the changing coefficient of lift.ɸ  
The boat also experienced a munk moment from the immediate diagonal flow caused by              

the rudder. This munk moment was approximated using equation (ii) below.  
 

(A22-A11) T = ɸ (ii) 
 

Again T is the torque applied on the boat, in the same direction as the lift from the                  
rudders, and is the rudder angle. A22 is the estimated added mass in the Y direction and A11 is  ɸ                  
the added mass in the X direction of the boat.  

Using the sum of the two terms above relation between rudder angle and torque was               
estimated. Both these equation where directly used in the simulink model to convert the              
controller output angle into applied torque on the boat. It should be noted that like in the code the                   
output angle was bound in the simulation between -30 and 20 degrees. It was also converted to                 
radians before being used in the above equations.  

Once the transfer functions and controller output where estimated the simulink model             
where used to tune the PID gains such that the boat had acceptable responses to a step function                  
and a step disturbance. Figure 12 show the best simulated response for speed and heading. Both                
systems where tuned to try get a settling time under 10s and an overshoot below 20%, while                 
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maintaining a high level of robustness. The gains used to achieve these responses were used in                
the PID code. 

 
Figure 12: Tuned step response and disturbance rejection for the          
simulink model for speed, to the left, and heading, to the right. The             
gains were optimized to achieve low settling time, and low          
overshoot as well as overcome disturbances. 

 
Sensor Data Acquisition and Processing Algorithms 
 
State Estimation with GPS and Inertial Measurements 
 

Feedback controllers that determined the motor and rudder angle commands relied on            
having a reasonably accurate estimate of the boat’s degrees of freedom. Specifically, these             
controllers depended on some combination of the boat’s speed, heading, and position (depending             
on the task). In addition, estimates of these degrees of freedom were necessary to quantify how                
well the boat performed the tasks it was executing. Therefore, the high-level strategy to              
controlling the boat involved making as few assumptions as possible about the boat’s motion,              
relying on measurements from multiple inertial and position sensors for state estimation, and             
using these measurements for feedback control. With this strategy, potential disturbances to the             
boat’s motion such as waves, wind, and currents can be corrected for with real time               
measurements. 

To implement this state estimation, the boat was modeled as a two-dimensional rigid             
body with three defining degrees of freedom: the two translational degrees of freedom of the               
boat’s center of mass relative to its position at the start of the task and the boat’s heading defined                   
as an angle relative to the Earth’s magnetic north (see Figure 13). The feedback controllers               
required these states to be measured at a reasonably high sampling rate (to avoid degradation of                
controller performance) and with reasonable smoothness.  
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Figure 13: A schematic of the two-dimensional model of the boat.           
The diagram shows the kinematic variables considered in the         
model. The boat’s velocity components u and v are relative to a            
coordinate system which is fixed to the moving boat (moving          
frame). The velocity components and are relative to a    uE   vE      
coordinate frame relative to the Earth with origin at the boat’s           
initial position (E-frame). The boat’s heading, , is defined      θ    
relative to the Earth’s magnetic north. The IMU collects linear          
(gravity-compensated) accelerations and are relative to the  ax  ay     
moving frame.  

 
Two sensors were used to measure necessary quantities for defining the boat’s degrees of              

freedom. The Adafruit BNO055 Absolute Orientation Sensor was used to collect inertial            
measurements such as acceleration, angular velocity, and angular orientation. This inertial           
measurement unit (IMU) also had on-board microprocessors which combined the raw sensor            
measurements and output highly accurate, fused orientation measurements as well as other            
compensated measurements. The Adafruit Ultimate GPS Breakout V3 was used to measure            
absolute position of the boat relative to the Earth. The sensor outputted standard latitude and               
longitude coordinates in degrees.  

The first attempt to measure boat kinematics involved using the GPS sensor to define the               
two translational position states and using the IMU’s fused sensor data to define the boat’s               
heading. The GPS coordinates were converted to distance measurements by modeling the Earth             
as a sphere with a constant radius of 6371 kilometers (see Appendix A for details). Tests were                 
performed early on to determine whether this combination of measurements would be acceptable             
to achieve the desired boat functionality. From this initial test, it was determined that while the                
GPS provided reasonably accurate position measurements, it also operated with a low sampling             
rate and was characterized by low resolution of approximately 3 to 5 meters. Additionally,              
meaningful velocity data could not be extracted from the measurements due to these limitations              
(see the right side of Figure 15). 
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These findings suggested that a data processing algorithm was needed that provided            
greater accuracy and incorporated measurements from multiple sensors. The next          
implementation of state estimation made use of inertial measurements provided by the IMU. A              
Kalman filter algorithm was developed which estimated the following four-dimensional state           
vector: 

 
where and are the boat’s position relative to its position at the start of the task, and and xE  yE                uE  

are the boat’s velocity in the x- and y-directions as defined in Figure 13 relative to the fixedvE                    
Earth frame. Based on our two-dimensional model of the boat, we developed the following state               
space representation of the system: 

 
where is the angular velocity of the boat, is the heading of the boat relative to the Earth’s ω         θ            
magnetic north, and and are the measured linear (gravity-compensated) accelerations   ax  ay       
relative to its moving coordinates. Note that and are accelerations compensated for       ax  ay      
out-of-plane motion. See Appendix A for details on this state space model. 

Because the Kalman filter functions in discrete time and is an iterative filter, the state               
space representation was converted to discrete time form using a backwards difference            
approximation: 

 

 
where is the time (in seconds) between samples. This model was then passed into the tΔ                
following Kalman filter algorithm [1][2]: 
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The matrices R and Q represent measurement and model covariance matrices,           

respectively. These particular matrices are diagonal because the position and velocity estimates            
are assumed to be independent in both the IMU model and the GPS measurements. Additionally,               
the values on the diagonal in each matrix were assumed to be equal for simplicity of                
implementation. The values on the diagonals needed to be designed. The design was             
implemented in practice by letting Q be an identity matrix and R be defined by: 

 

 
where  was a constant to be chosen by design.μ   
 
Optimization and Quantitative Performance of State Estimation Algorithm 
 

To estimate , sensor data was collected while walking a closed path of approximately  μ             
one kilometer with the sensors held as close to horizontal as possible throughout the trajectory.               
The raw sensor data were then imported into MATLAB and run through a Kalman filter               
simulation while manually varying the value of . The constant was varied until the filtered       μ         
position data matched reasonably well with the trajectory predicted by the GPS data while the               
speed profile reached maximum smoothness as determined by visual inspection (see Figures 14             
and 15). Analysis of the test data revealed that values of between approximately 500 and 3000           μ       
provided acceptable estimates of boat position when compared to GPS data. Varying within            μ   
this range tends to affect noise levels in the speed profile more than accuracy of position                
estimates.  
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Figure 14: Position estimates from GPS measurements and from         
Kalman filter outputs. For covariance matrix estimates, a scaling         
value of was used in the above output. This test data   1000μ =            
demonstrates that the Kalman filter outputs provide reasonably        
accurate position measurements over large displacements while       
providing smoother measurements over smaller displacements.  
 

By choosing to use the Kalman filter, the iterative algorithm is inherently limited by the               
sampling rate of the slowest sensor (i.e. 10 Hz from the GPS module). However, because the                
IMU can update at a rate as high as 100 Hz, a strategy that was attempted for improving this                   
sampling rate was to perform dead reckoning estimation using Equation 4 in between GPS              
samples. Initial test results from land-based tests for this modified algorithm are shown in Figure               
16. The results revealed an important trade-off between sampling rate and accuracy. The             
introduction of any amount of dead reckoning did not significantly affect stability of the              
algorithm but did have a noticeable effect on the noise in the algorithm’s output measurements.               
The noise could be slightly reduced by increasing the value of , but this resulted in decreased           μ       
accuracy in the estimates in the long term.  

Both variants on the Kalman filter algorithm were tested with the boat in real time, and it                 
was determined that a slower update rate was better tolerated by the feedback controllers than               
greater levels of noise in the speed measurements. Therefore, the Kalman filter was implemented              
with the 10 Hz sampling rate and did not include any amount of dead reckoning estimates in                 
between GPS updates. Ultimately, a value of was chosen for use in the real-time        500μ =          
algorithm to produce reasonably accurate position measurements with a maximally smooth           
speed. 
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Figure 15: Boat speed estimated from the real time Kalman filter           
outputs (left) and backwards difference calculations from GPS        
measurements (right). Because the GPS measurements are not        
smooth over short time intervals, the speed profile from the          
backwards difference calculations results in noisy and inaccurate        
speed measurements which are unusable in real-time feedback        
controllers. 

 

 
 

Figure 16: Boat speed estimated from the real time Kalman filter           
algorithm with dead reckoning estimates included in between GPS         
updates. Comparison with Figure 15 shows a significant increase         
in noise levels in the signal with a negligible effect on state            
estimate accuracy. 
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Results 
 

Each task followed a very similar procedure to begin. Before beginning any test, the              
Arduino is reset and follows the calibration procedure for the sensors. The magnetometer on the               
IMU required the sensor to be rotated in a figure-eight-like motion in order to locate the direction                 
of true north. The gyroscope was calibrated by allowing the sensor to remain at rest for a few                  
seconds. An indicator light on a breadboard was used to indicate when sensor calibration was               
successful. Once calibration was completed and a GPS fix was received, the Arduino began              
collecting sensor data and performing state estimation. The boat remained in a remote-controlled             
state as the boat was prepared and placed in the water. For each test, the boat is initially oriented                   
parallel to the dock. The task was initiated by flipping a switch on the RC controller which opens                  
the relay switches and shifts control of the boat from RC to autonomous navigation. Each task                
continues indefinitely until RC control is reinitiated on the RC controller and the boat is               
manually driven back to the dock. 
 
Constant Heading and Speed Task: Data and Analysis 
 

To test task 1, the boat was given a setpoint heading of 140 degrees relative to true north                  
and a setpoint speed of 1 meter per second. The control algorithms launch the boat from the dock                  
and control the heading and speed to match the setpoints.  

Post-task data processing was performed on the steady state task motion which ignored             
transient behaviors to reach the setpoint as well as data collected during manual RC navigation.               
The speed and heading estimates from one test of this task are shown in Figure 17 along with the                   
average values for the displayed window of data. The data show that the boat’s speed was                
maintained at 1.45 ± 0.63 m/s and its heading was maintained at 136.10 ± 11.79 degrees. It                 
should be noted that the speed profile was highly oscillatory, indicating that the system has a                
significant amount of overshoot. This result was qualitatively observed during testing when the             
motors appeared to switch between being fully on and fully off.  
 

 
Figure 17: Boat speed (left) and heading (right) during steady state           
operation of the constant speed and constant heading control task.          
The dashed line indicates average value of the displayed window.          
The control algorithm had setpoints of 140 degrees for the heading           
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and 1 meter per second (m/s) for the speed. Average speed of the             
boat was 1.45 ± 0.63 m/s and average heading was 136.10 ± 11.79             
degrees. 

 
Circular Motion Task: Data and Analysis 
 

To test task 2, the boat was commanded to travel at a constant speed (1 meter per second)                  
at a heading of 180 degrees relative to north until it reached a distance of approximately 30                 
meters from the dock. The microcontroller then calculated a centerpoint for the boat’s circular              
trajectory that was approximately 10 meters perpendicular to its current heading. The control             
scheme as detailed in previous sections was then initiated the circular motion control.  

Figures 18 and 19 show the x-displacement, y-displacement, and speed of the boat during              
steady state operation of this task. As in the previous task, an average value of boat speed was                  
calculated as 2.11 ± 0.71 m/s. The x- and y-displacements of the boat over time are important for                  
determining whether the boat performs the circular motion about the centerpoint with constant             
radius. If the motion was performed with constant radius, the peak-to-peak measurements of the              
sinusoidal profiles in the x- and y-displacements plots should be equal. As shown in Figure 19,                
the estimated radius from each profile (defined as half the peak-to-peak measurement) was 11.22              
and 12.44 meters, respectively.  

 

 
 

Figure 18: Boat speed during steady state operation of the circular           
motion task. The dashed line indicates average speed of 2.11 ±           
0.73 m/s over the displayed window.  
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Figure 19: Boat x-displacement (left) and y-displacement (right)        
during steady state operation of the circular motion task. The          
dashed lines indicate extrema in each dimension. The radius of the           
motion predicted from the x-displacement (defined as half of the          
peak-to-peak value) was 11.22 meters, while the same prediction         
from the y-displacement was 12.44 meters.  

 
 
Discussion and Conclusion 
 
Mechanical Design  
 
Stability and Maneuverability 
 

Our boat was quite stable because of a number of design choices that were made. First,                
because a GPS antenna was not necessary to achieve greater GPS accuracy, the GPS module               
could be contained completely in the boat which helped keep the center of mass low.               
Additionally, the avionics box was rather compact, which allowed it to fit inside the boat and                
lowered the center of mass. Finally, the boat was properly ballasted so that it sat at the water line                   
and the weight was evenly distributed for added stability. 

While motor alignment was not well controlled during assembly, the flexible shaft            
couplings allowed small misalignments in of the motor shaft to be tolerated and helped boat               
maneuverability. Improvements to initial shaft alignment could improve maneuverability         
because if the motors were more symmetric, differences in motor speeds would reduced and              
allow the boat to more easily travel in a straight line. Despite the fast winds and rather choppy                  
currents, the boat performed rather well with RC control. From a mechanical standpoint, the boat               
was quite maneuverable and stable, which we attribute to ballasting at the water line and               
sufficiently waterproofing the vehicle. 

 
Waterproofing and Logistics 
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If we had more time, it would have been useful to have a more permanent cover for the                  
boat. We originally planned to laser-cut an acrylic top and use weatherproofing so that it would                
be watertight and easily removed, but in the end settled for a trash bag cut and folded, and taped                   
with duct tape. While this approach was by no means professional, it was rather effective, but                
after a couple of test runs a sponge had to be used to soak up the water that accumulated at the                     
bottom of the boat. It was also tedious to have to untape the cover in order to re-calibrate the                   
sensors each time, which is why a more permanent cover would have been useful. This problem                
could be further improved by finding a way to avoid sensor recalibration each time the Arduino                
program is reset. 
 
Task Performance 
 

Section 7 detailed the results from our boat’s performance of tasks 1 and 2. In general,                
the results showed that the boat’s heading control was robust and reliable despite the presence of                
significant external disturbances such as high winds and waves. In the performance of task 1, the                
control system successfully maintained the boat’s setpoint heading and speed to within one             
standard deviation of the average heading and speed. In both controllers, overshoot of the              
setpoint became significant in some cases. This observation is most clear in the speed profile               
where the speed tended to oscillate about the mean value. In task 2, the boat successfully                
navigated a trajectory that qualitatively appeared circular. Similar to task 1, the speed profile              
displayed some oscillatory behavior about a mean value. However, in task 2 this speed was               
significantly different from the setpoint of 1 meter per second.  

From the task 2 results, it could be shown that the boat was navigating in a circular path                  
with a radius that was reasonably close to the commanded setpoint in the control algorithm.               
Additionally, because the x- and y-displacement profiles estimated similar values for the radius,             
the radius was considered reasonably constant. However, while the boat was performing motion             
that appeared circular and could be considered circular, it is possible for the performance to               
improved to maneuver in a more circular path. One explanation for the fact that motion was not                 
perfectly circular may be that the navigation algorithm employs an “on-off” control scheme.             
While acceptable for an initial attempt at control, “on-off” control tends to result in large errors                
over time. In future work, other control schemes may be devised that make use of error                
measurements to control the motion which can decrease error in the trajectory. 

These results showed clearly that further adjustment and optimization of the controllers            
may be necessary to achieve more continuous and accurate control of heading and speed. In the                
case of the heading control system, this would most likely involve tuning of gains because the                
heading measurements from the IMU have negligible noise and are highly accurate. In the case               
of the speed controller, it may be possible to improve the Kalman filter algorithms to provide                
more accurate speed estimates with lower levels of noise in addition to optimizing gain values of                
the controllers. It is also possible that other bugs occurred in the speed controller that were not                 
found prior to or during testing and should be investigated in future work.  

In testing our boat’s control algorithms for each task, we were unable to obtain              
functionality or data for task 3. This was due to lack of time to correctly implement and debug                  
the conceptualized algorithm. In future work, the algorithm for this task will be reexamined to               
identify bugs in the program. In addition, the devised algorithm relied on knowing the general               
location of the buoy for proper operation. Future iterations of the algorithm may involve              
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including an obstacle detection sensor such as an ultrasonic sensor to detect the buoy regardless               
of location. 
 
 
 
Practical Applications 
Below are some of the possible applications for our boat: 
 

● Getting sensor data from the Charles (temperature, humidity, etc.) 
● Programming the boat to autonomously drag the Charles for trash 
● Stealthy assault boat 
● Attacking geese 
● Transporting backpack or supplies across the Charles for you when you’re walking back             

to Boston after a late night 2.017 pset group  
● Intercepting messages transmitted from a buoy and gathering intel on other boats 
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Appendices 
 
Appendix A: Derivation of Kinematic Model for Kalman Filter State Estimation 
 

The following derivation details how raw sensor data was converted to the state space              
representation given in Figure 13 on page 15 with the state vector defined in equation 1.  

The GPS module provided latitude and longitude measurements in degrees. However,           
because the IMU provided displacements in units of length, the GPS measurements needed to be               
converted to displacements. Therefore, a coordinate system was established each time that the             
Arduino was reset in which the origin is located at the start position of the boat with the positive                   
y-axis defined in the direction of true north. GPS coordinates were then converted to              
displacements using small angle approximations: 
 

 
 
where is the boat’s x-coordinate (in meters) relative to its starting position, is the boat’s xE            yE    
y-coordinate (in meters), and ϕ are the boat’s GPS longitude and latitude (respectively) in   λ             
degrees, is the radius of Earth (in meters), and and are the boat’s GPS longitude RE         λ  start    ϕ start      
and latitude at the start of operation. Note that it was assumed that in the correction of              λ λ ≃  start     
the Earth’s radius for . The simplifying assumptions made in these conversion equations are    xE           
justified by the fact that the boat operates over a relatively small distance along the Earth’s                
surface.  

Along with the position estimates from the GPS module, estimates of position and             
velocity were obtained from kinematic measurements from the IMU. A state space            
representation for the boat’s motion based exclusively on kinematic variables was developed.            
This model assumed that the boat was a two-dimensional rigid body with three degrees of               
freedom. The model was developed from the following kinematic equations for two-dimensional            
planar motion: 
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where and are the boat’s velocity components in a reference frame fixed to the boat, u  v               xE
and are the boat’s position relative to its position at the start of the task, and are the yE               uE  vE    
boat’s velocity in the x- and y-directions relative to the fixed Earth frame (with the y-axis aligned                 
with the direction of true north), is the angular velocity of the boat, is the heading of the      ω         θ       
boat relative to the Earth’s magnetic north, and and are the measured linear        ax  ay      
(gravity-compensated) accelerations of the boat relative to its moving coordinates. The model is             
shown schematically in Figure 13. Equations 16 through 21 can be simplified to express the               
system in state space representation as in equation 2. 

While the boat was modeled as planar, the effects of out of plane pitch and roll                
orientations can be quite significant. Therefore, the values of and account for out of plane         ax  ay      
motions with: 
 

 
 
where and are the accelerations collected from the IMU, is the pitch angle of the ax, raw  ay, raw         ψ       
boat and ϕ is the roll angle of the boat. Similar to heading, pitch and roll angles can be measured                    
very accurately and with negligible levels of noise from the fused orientation output from the               
IMU. This correction is accounted for schematically in Figure 20. 
 

 
Figur 20: Out of plane orientation and its effects on linear           
acceleration measurements from the IMU. denotes the pitch     ψ     
angle of the boat and ϕ denotes the roll angle of the boat.  
 

Appendix B: MATLAB Code Used to Generate Kalman Filter Source Code 
 
The Kalman filter algorithm was initially created in MATLAB because it handles matrix             
operations more easily than the same operations in the Arduino language. The below code was               
passed into the MATLAB Coder application and source code for the function was generated in C                
language to be used in the Arduino compiler.  
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Appendix C: Simulink Models\ 
 
Simulink Model for Speed 

 
Simulink Model for Heading 

 


