MILESTONE 9

Ryan Koeppen 2.007 Spring 2017 4/24/2017

Competition Strategy

- Spin upper X-Wing Engine to between 21 and 25 rad/s (~200 to 240 rpm)
- (As time allows) Raise light saber to 2x multiplier
- Time Allocation
 - <u>Autonomous (30 sec)</u>: Position robot at bottom of ramp or elevator
 - <u>30 sec</u>: Drive robot to top floor
 - <u>30 sec</u>: Spin X-Wing Engine
 - <u>30 sec</u>: Raise light saber
- Control
 - PS2 Controller with Programmed Arduino
- <u>Total Predicted Points</u>: 220 to 312.5 (plus multiplier)

Design Requirements

- X-Wing Engine
 - Overcome ~0.12 Nm of frictional torque on engine
 - Final rotational speed: 200 to 240 rpm
 - Time to steady state speed: ~20 seconds
- Locomotion Requirements
 - Activate elevator (center located ~9 in. from platform)
- Light Saber (as time allows)
 - Overcome torque due to weight of light saber (~ 9 Nm)
 - Lift light saber base to height of 4.5 inches (45° angle from vertical)

X-Wing Module: Custom Gear Design

- y = 0.25 in.
- X = 0.14 in.

Χ

m = # of holes in gear

X

X-Wing Module: Custom Gear Design

- y = 0.25 in.
- X = 0.14 in.

Χ

m = # of holes in gear

X

- n = number of motors
- N = gear ratio between motor(s) and custom gear
- T_m = torque outputted by one motor
- ω_m = speed of motor
- T_G = torque outputted by custom gear
- ω_G = speed of custom gear
- T_f = frictional torque on engine
- R_E = radius of X-Wing engine
- R_{G} = radius of custom gear
- T_{stall} = stall torque of motor
- ω_{nl} = no-load speed of motor

 $N_G \equiv R_G / R_E$

$$T_m = T_{stall} \left(1 - \frac{\omega_m}{\omega_{nl}}\right)$$

X-Wing Module: Choosing Motor and Gear Reduction

- n = number of motors
- N = gear ratio from motor(s) to custom gear
- T_m = torque output of one motor
- ω_m = speed of motor
- T_G = torque output from custom gear
- ω_{G} = speed of custom gear
- T_f = frictional torque on engine
- R_E = radius of X-Wing engine
- R_G = radius of custom gear
- T_{stall} = stall torque of motor
- ω_{nl} = no-load speed of motor
- $N_G \equiv R_G / R_E$

- n = number of motors
- N = gear ratio between motor(s)and custom gear
- T_m = torque outputted by one motor
- ω_m = speed of motor
- T_{G} = torque outputted by custom gear
- $\omega_{\rm G}$ = speed of custom gear
- = frictional torque on engine
- = radius of X-Wing engine R₌
- = radius of custom gear R_G
- $T_{stall} = stall torque of motor$
- ω_{nl} = no-load speed of motor

 $N_G \equiv R_G / R_E$

Custom Gear to Engine

T_f

۱_F

- n = number of motors
- N = gear ratio between motor(s) and custom gear
- T_m = torque outputted by one motor
- ω_m = speed of motor
- T_G = torque outputted by custom gear
- ω_G = speed of custom gear
- T_f = frictional torque on engine
- R_E = radius of X-Wing engine
- R_{G} = radius of custom gear
- T_{stall} = stall torque of motor
- ω_{nl} = no-load speed of motor

$$N_G \equiv R_G / R_E$$

 $\sum M = T_E - T_f = 0$ $\implies T_m = \frac{T_f}{n} \left(\frac{N_G}{N}\right)$

- n = number of motors
- N = gear ratio between motor(s)and custom gear
- T_m = torque outputted by one motor
- $\omega_{\rm m}$ = speed of motor
- T_G = torque outputted by custom gear
- $\omega_{\rm G}$ = speed of custom gear
- = frictional torque on engine T_f
- = radius of X-Wing engine R₌
- R_{G} = radius of custom gear
- $T_{stall} = stall torque of motor$
- ω_{nl} = no-load speed of motor

$$N_G \equiv R_G / R_E$$

Combining all four analyses...

$$\omega_{nl} \left(\frac{N_G}{N}\right) \left[1 - \frac{T_f}{T_{stall}} \left(\frac{N_G}{nN}\right)\right] > \omega_E$$
$$T_{stall} > \left(\frac{1}{n}\right) \left(\frac{N_G}{N}\right) T_{f,s}$$

⇒ BO-P5 Running at 5V with 1 : 13.5 gear reduction yields theoretical engine speed of <u>254 rpm</u> ⇒ Minimum stall torque is achieved with S.F. of 2

Final Design

Moving Forward

- Required
 - Finish assembling robot and test
 - Practice!
- As time allows
 - Program Arduino for autonomous period
 - Add simple device for light saber tilt

Questions?

Presentation Appendix

Motor Operation: Torque vs. Speed Curve

