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Abstract—For many dynamical systems, designing a 

stable controller to achieve a desired closed-loop dynamic 

response requires reasonably accurate knowledge or 

measurement of the system’s open-loop dynamics. In some 

cases, it is not possible to accurately predict those dynamics 

due to uncertainties in system parameters (such as mass). 

One solution to this problem is to use an adaptive controller, 

which adjusts controller gains in response to errors in 

closed-loop response relative to a predicted response. In this 

work, a model reference adaptive controller (MRAC) was 

developed and implemented on a Parrot Mambo 

quadcopter to demonstrate controller adaptation in 

response to unexpected or changes in vehicle mass. 

Solutions to implementation problems are discussed, and 

simulation results demonstrate stability of the controller for 

a pulse maneuver in drone altitude.  

I. INTRODUCTION 

 In classical methods for controller design of 

dynamical systems, development of a controller typically 

requires accurate knowledge of the system of interest. For 

example, for a linear, time-invariant system with following 

form 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 , the matrices A and B are typically 

known either by modeling the system or through empirical 

system identification. Controllers can then be designed using 

various methods (such as pole placement or LQR design) to 

achieve desired closed-loop dynamic behavior. 

 One limitation to these control schemes is that they 

are not typically robust to uncertainties or changes in the 

system’s open-loop dynamics. One specific example is that 

many systems may experience an unknown change in mass 

directly preceding or during operation. For example, 

commercial airplanes may vary widely in mass depending 

on the number of people and bags onboard but must still 

maintain stable operation. Manufacturing robots may need 

to move objects of varying size and weight while 

maintaining desired closed-loop response times. Quadrotor 

drones, like the one used in this work, are also susceptible to 

instability due to added mass. The drone may, for example, 

have an attachment that allows it to pick up and drop masses 
on command. The attachment may be off-center from the 

drone’s center of mass, potentially leading to steady state 

error and instability in altitude as well as attitude. 

 One solution to overcome uncertainties in plant 

dynamics is to use an adaptive controller. An initial 

condition for the controller, assuming the system dynamics 

are as expected or measured, is designed using a classical 

control method. As the system operates, an adaptation 

mechanism is used to update the controller parameters 

and/or the estimated plant parameters. The ultimate goal of 

this control scheme is to adjust these parameters such that 

the closed-loop dynamics of the unknown system match the 

desired closed-loop dynamics. 

 In this work, a full-state adaptive controller was 

designed in order to compensate for off-center, added mass 

on a Parrot Mambo minidrone. The controller was 

implemented in Simulink, simulated with a model of the 

minidrone, and tuned to achieve stable and desirable results. 

The controller was then implemented on the physical 

minidrone and experiments were conducted to verify 

similarity to simulation performance. This paper focuses on 

the theoretical basis for the adaptive controller as well as its 

implementation in Simulink for simulation and deployment 

to hardware.  

II. MODEL REFERENCE ADAPTIVE CONTROL FOR MIMO 

SYSTEMS 

 One popular adaptive control scheme is known as 

model reference adaptive control (MRAC). With MRAC, 

the goal is to update controller parameters without 

necessarily knowing or estimating the plant parameters. For 

the purposes of this work, the drone mass and center-of-mass 

are unknown or different from modeled or measured values, 

and the controller evolves over time to compensate for these 

uncertainties.   

 To understand this concept, consider the following 

controller and linear, time-invariant plant: 

 

 𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1) 

 𝑢(𝑡) = 𝐾𝑥
𝑇(𝑡)𝑥(𝑡) + 𝐾𝑟

𝑇(𝑡)𝑟(𝑡) (2) 

 



where 𝑥 ∈ ℝ𝑛 is a vector of states of the drone, 𝑢 ∈ ℝ𝑚 is a 

vector of inputs to the drone , and 𝑟 ∈ ℝ𝑛  is a bounded 

command signal for the drone. In our case, 𝑟 represents the 

desired trajectory, attitude, and velocities of the drone at a 

particular time 𝑡. It should be noted that, in classical control, 

𝐾𝑥 and 𝐾𝑟 would be time-invariant. With MRAC, however, 

these gains must evolve over time to compensate for the un-

modeled dynamics from the added mass. Because this added 

mass may affect multiple states (for example, altitude and 

pitch), this system requires a full-state adaptive controller.  

 The controller developed in this work was based off 

the direct model reference adaptive controller detailed by 

Lavretsky et al [1]. A high level block diagram of the control 

scheme is shown in Figure 1. To update 𝐾𝑥  and 𝐾𝑟 , a 

reference model of the system is needed to compare the 

actual drone performance to the desired closed-loop 

dynamics. The reference model takes the following form: 

 

 𝑥̇𝑟𝑒𝑓 = 𝐴𝑟𝑒𝑓𝑥𝑟𝑒𝑓 + 𝐵𝑟𝑒𝑓𝑟 (3) 

 𝐴𝑟𝑒𝑓 = 𝐴𝑚 − 𝐵𝑚𝐾0 (4) 

 

𝐴𝑟𝑒𝑓 represents the linearized desired closed-loop dynamics 

of the system. 𝐴𝑚 and 𝐵𝑚 correspond to the reference model 

plant. For this application, we assume that there is no 

uncertainty associated with the input commands, so 𝐵𝑚 ≈
𝐵 . 𝐾0  is the controller gain matrix found using classical 

controller design methods such that when there is no added 

mass on the drone, 𝑢(𝑡) = −𝐾0𝑥(𝑡). 𝑥𝑟𝑒𝑓(𝑡) is the estimate 

for the system’s states based on this given reference model.  

 For a given reference signal 𝑟(𝑡) , the reference 

model is simulated alongside the actual system, allowing 

𝑥𝑟𝑒𝑓 and 𝑥 to be compared as the system evolves.  Lavretsky 

et al derives the multi-input, multi-output (MIMO) adaptive 

controller using Lyapunov stability arguments subject to the 

constraints that 𝐴 + 𝐵𝐾𝑥
𝑇 = 𝐴𝑟𝑒𝑓  and 𝐵𝐾𝑟

𝑇 = 𝐵𝑟𝑒𝑓 . The 

result of the analysis is the following adaptation laws for the 

controller gains 𝐾𝑥 and 𝐾𝑟: 

 

 𝐾̇𝑥 = −Γ𝑥𝑥𝑒𝑇𝑃𝐵 (5) 

 𝐾̇𝑟 = −Γ𝑟𝑟𝑒𝑇𝑃𝐵 (6) 

 

In the above equations, P solves the algebraic Lyapunov 

equation 𝑃𝐴𝑟𝑒𝑓 + 𝐴𝑟𝑒𝑓
𝑇 𝑃 =  −𝑄 (for some positive definite 

matrix Q) and 𝑒 = 𝑥 − 𝑥𝑟𝑒𝑓 represents the error between the 

actual system’s states and the simulated reference model’s 

states. It is clear that as 𝑒 → 0, the above adaptation laws 

will go to zero and the controller gains will remain constant. 

Γ𝑥  and Γ𝑟  represent adaptation gains and are analogous to 

how quickly 𝐾𝑥  and 𝐾𝑟  (respectively) should adapt to 

modeling errors. With this MRAC scheme, there are four 

matrices which can be tuned to achieve desired results: 𝐴𝑟𝑒𝑓 

(the desired closed-loop dynamics), Γ𝑥, Γ𝑟, and Q. 

III. SIMULINK IMPLEMENTATION 

A. MRAC Implementation for Hardware 

 Once the MRAC theory was understood from the 

derivation by Lavretsky et al, the adaptive controller needed 

to be implemented in software with the eventual goal of 

being deployed to the Parrot Mambo hardware. The adaptive 

controller required the following parameters to be defined: 

a) 𝑟(𝑡) 

b) 𝐴𝑟𝑒𝑓, 𝐵, and 𝐾0 

c) Γ𝑥, Γ𝑟, and Q 

 

Fig. 1. Block diagram of a model reference adaptive control scheme as developed by Lavretsky et al [1]. 

The reference model is simulated separately from the real drone dynamics and is used to update controller gains 

with an adaptation mechanism.  

 



 

𝑟(𝑡) is defined by the desired task. For the initial simulations 

discussed in this paper, 𝑟(𝑡) consisted of a pulse maneuver 

for the drone altitude and was zero for all other states. For 

the items in (b), the drone dynamics were modeled using the 

“complexDrone” model from class assignments. The 

dynamics were then linearized around a hover point of 1 

meter above the ground. 𝐾0  was defined to be the pole 

placement controller developed in lab 2 corresponding to the 

fast closed-loop hover dynamics.  

 The items in (c) were design parameters to be 

chosen. These matrices were initially chosen to be diagonal 

matrices since, to first approximation, each element on the 

diagonal corresponds to the adaptation rate of a different 

state. Using diagonal matrices eliminates complexities 

associated with tuning coupled adaptation rates. The exact 

values for these matrices are discussed in later sections with 

simulation results. Once these matrices were chosen, the 

matrix P could be calculated using the “lyap” function in 

MATLAB, which solved the algebraic Lyapunov equation 

automatically. 
 The Simulink block diagram for the implemented 

adaptive controller is shown in Figure 2. An important note 
is that because controller gains generally operate on 
linearized systems to yield system inputs about a 
linearization point, 𝑥  and 𝑥𝑟𝑒𝑓  in the previously discussed 

theory correspond to state errors with respect to the hover 
(linearization) point.  As a result, the reference command 
𝑟(𝑡)  is subtracted from actual and reference model states 
before passing the values to the controller. Because this 
controller also needs to be deployable to the drone, all 
operators (such as the integrator block) needed to be in 
discrete-time. The controller gains 𝐾𝑥  and 𝐾𝑟  were 

initialized such that 𝐾𝑥(𝑡 = 0) =  −𝐾0
𝑇  and 𝐾𝑟(𝑡 = 0) =

0𝑛𝑥𝑚 to ensure that 𝑢(𝑡 = 0) =  −𝐾0𝑥(𝑡 = 0). Therefore, if 
the drone experiences no added mass, the controller gains 
will experience little adaptation and 𝑢(𝑡) ≈  −𝐾0𝑥(𝑡) for all 
time 𝑡. 

B. Reference Model in Discrete Time 

 This MRAC scheme required that the drone 

dynamics (without added mass) be simulated in parallel with 

the measurement of the drone’s actual dynamics in order to 

adapt the controller gains. In developing this reference 

model, it was necessary for the output to be reasonably 

accurate while also being simulated in discrete time to 

ensure compatibility with the drone hardware. The first 

option considered for the reference model was a linear 

system using the 𝐴𝑟𝑒𝑓  matrix generated from the 

linearization of the “complexDrone” model. While this 

system can easily be implemented in discrete time, the 

response too easily diverges if the drone’s state becomes too 

far from the linearization point. The second option was to 

use the “complexDrone” nonlinear model. While the non-

linear dynamics provide more accuracy far from the 

linearization point, the MATLAB s-function 

“quadrotor_dynamics” (used by the “complexDrone” 

model) simulates the dynamics in continuous time. While 

attempts were made to discretize this s-function output, the 

simulations became unstable. 

 To overcome these problems, a reference model 

subsystem was built using the functions in the 

“quadrotor_dynamics” s-function. One function calculated 

the system derivatives, and another function performed a 

 
 

Fig. 2. Simulink diagram of the implemented model reference adaptive controller. Discrete time integration blocks are 

used to allow the controller to be used both in simulation and onboard the drone. 

 

Fig. 3. Simulink subsystem of the discretized drone dynamics 

(derived from the “quadrotor_dynamics” s-function from Parrot). 

The first MATLAB function calculates derivatives which are then 

passed to an integration block. The states undergo a coordinate 

transformation before eing outputted to the controller. 



coordinate transformation for the drone states. 

Mathematically: 

 

 𝑥̇′ = 𝑓(𝑥, 𝑢) (7) 

 𝑥 = 𝑔(𝑥′) (8) 

 

 The above equations were each implemented as 

MATLAB function blocks in Simulink. The output of 

Equation 7 was integrated using a discrete-time integrator 

block and then passed as the input for Equation 8. Figure 3 

shows the Simulink model corresponding to the equations 

for the drone dynamics. 

 The full reference model block is shown in Figure 

4. It was developed from the “complexDrone” model and 

includes the discretized drone dynamics from Figure 3. 

Figure 4 also shows an additional modification (the green 

subsystem block) from the “complexDrone” model to 

account for takeoff. During the takeoff time, the commanded 

thrust force is set to be a constant value rather than 

determined by the controller due to the unreliability of the 

sensors at low altitude. In the drone hardware, the takeoff 

time is automatically implemented. However, if the 

reference model does not also account for this command, 

then the reference model dynamics will be inaccurate 

compared to the actual drone dynamics. This takeoff block 

was copied into the reference model to allow deployment 

and use onboard the drone. 
 

IV. SIMULATION RESULTS 

 To help with initial gain tuning and ensure stability 

of the drone, the adaptive controller was simulated using the 

“quadrotor_dynamics” function as well as the animation in 

the asbQuadcopter project. The continuous time simulation 

with the “quadrotor_dynamics” function was developed by 

a colleague and is not discussed in detail here. 
 After much gain tuning, it was found that the 

following gains produced a stable response with adequately 
fast adaption: Γ𝑟 = 0.0001 × 𝐼𝑛×𝑛, 𝑄 =  0.01 × 𝐼𝑛×𝑛, and 
Γ𝑥 = 0.0001 × 𝐼𝑛×𝑛  except for the third diagonal element 

(corresponding to the altitude) which had a value of 0.001. 
The response of the adaptive controller (compared to the 
reference model dynamics) is shown in Figure 5. In this 
simulation, the actual drone mass was changed from 0.068 kg 
to 0.200 kg, while the reference model mass remained at 
0.068 kg. It is clear that with added mass, the controller is 
able to stabilize the drone reasonably well and the actual 
response closely follows the desired closed-loop dynamics. 
There is notable (but slight) overshoot near the step changes 
in the pulse maneuver that, with further gain tuning, could 
potentially be eliminated. 

V. CONCLUSIONS AND FUTURE WORK 

 In this work, a model reference adaptive controller 

(derived by Lavretsky et al) was developed and implemented 

for a Parrot Mambo minidrone in order to control for 

(unknown) added mass or changes in mass. The theoretical 

basis for a model reference adaptive controller was 

discussed along with design and implementation 

considerations that follow from it. Appropriate simplifying 

assumptions for the MRAC theory were also detailed. 

 

Fig. 4. Simulink model of the full reference model. It consists of a pole-placement controller which calculates an input 

to pass to the drone dynamics. The green block in the center of the model accounts for any takeoff time required when 

the drone is deployed to the Parrot drone. 

 

Fig. 5. A plot from simulation of the adaptive controller showing 

the altitude response of the drone. The yellow line represents the 

desired closed-loop dynamics and the blue line represents the 

response of the drone with the adaptive controller.  



Solutions to hardware implementation issues associated with 

the reference model were presented. These solutions 

involved a discretization of the nonlinear dynamics of the 

“quadrotor_dynamics” and accounting for takeoff time 

when the controller is deployed to hardware. Finally, the 

controller was implemented in a simulation in which the 

simulated drone’s mass was increased by nearly 3 times. The 

simulation showed a stable response of the adaptive 

controller, while also demonstrating areas for future 

improvement related to reducing overshoot. 

 Results from experiments involving the physical 

drone were not shown in this paper and will be discussed by 

my colleague in further detail. However, both the real-life 

and simulation results reveal that the transient response of 

the drone dynamics require improvement to eliminate 

overshoot, which indicates further need to refine the 

adaptive controller model or tune adaptation gains. In 

addition, this work primarily focused on adaptive control for 

altitude and attitude control. Future work may focus on 

incorporating planar motion of the drone in order to achieve 

stable lateral movement in addition to stability in hover.   
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