

Design of Model Reference Adaptive Controller for

Uncertainty in Quadcopter Mass

Ryan Koeppen

Department of Mechanical Engineering

Fall 2019 16.31 Final Project Report

Abstract—For many dynamical systems, designing a

stable controller to achieve a desired closed-loop dynamic

response requires reasonably accurate knowledge or

measurement of the system’s open-loop dynamics. In some

cases, it is not possible to accurately predict those dynamics

due to uncertainties in system parameters (such as mass).

One solution to this problem is to use an adaptive controller,

which adjusts controller gains in response to errors in

closed-loop response relative to a predicted response. In this

work, a model reference adaptive controller (MRAC) was

developed and implemented on a Parrot Mambo

quadcopter to demonstrate controller adaptation in

response to unexpected or changes in vehicle mass.

Solutions to implementation problems are discussed, and

simulation results demonstrate stability of the controller for

a pulse maneuver in drone altitude.

I. INTRODUCTION

 In classical methods for controller design of

dynamical systems, development of a controller typically

requires accurate knowledge of the system of interest. For

example, for a linear, time-invariant system with following

form �̇� = 𝐴𝑥 + 𝐵𝑢 , the matrices A and B are typically

known either by modeling the system or through empirical

system identification. Controllers can then be designed using

various methods (such as pole placement or LQR design) to

achieve desired closed-loop dynamic behavior.

 One limitation to these control schemes is that they

are not typically robust to uncertainties or changes in the

system’s open-loop dynamics. One specific example is that

many systems may experience an unknown change in mass

directly preceding or during operation. For example,

commercial airplanes may vary widely in mass depending

on the number of people and bags onboard but must still

maintain stable operation. Manufacturing robots may need

to move objects of varying size and weight while

maintaining desired closed-loop response times. Quadrotor

drones, like the one used in this work, are also susceptible to

instability due to added mass. The drone may, for example,

have an attachment that allows it to pick up and drop masses
on command. The attachment may be off-center from the

drone’s center of mass, potentially leading to steady state

error and instability in altitude as well as attitude.

 One solution to overcome uncertainties in plant

dynamics is to use an adaptive controller. An initial

condition for the controller, assuming the system dynamics

are as expected or measured, is designed using a classical

control method. As the system operates, an adaptation

mechanism is used to update the controller parameters

and/or the estimated plant parameters. The ultimate goal of

this control scheme is to adjust these parameters such that

the closed-loop dynamics of the unknown system match the

desired closed-loop dynamics.

 In this work, a full-state adaptive controller was

designed in order to compensate for off-center, added mass

on a Parrot Mambo minidrone. The controller was

implemented in Simulink, simulated with a model of the

minidrone, and tuned to achieve stable and desirable results.

The controller was then implemented on the physical

minidrone and experiments were conducted to verify

similarity to simulation performance. This paper focuses on

the theoretical basis for the adaptive controller as well as its

implementation in Simulink for simulation and deployment

to hardware.

II. MODEL REFERENCE ADAPTIVE CONTROL FOR MIMO

SYSTEMS

 One popular adaptive control scheme is known as

model reference adaptive control (MRAC). With MRAC,

the goal is to update controller parameters without

necessarily knowing or estimating the plant parameters. For

the purposes of this work, the drone mass and center-of-mass

are unknown or different from modeled or measured values,

and the controller evolves over time to compensate for these

uncertainties.

 To understand this concept, consider the following

controller and linear, time-invariant plant:

 �̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1)

 𝑢(𝑡) = 𝐾𝑥
𝑇(𝑡)𝑥(𝑡) + 𝐾𝑟

𝑇(𝑡)𝑟(𝑡) (2)

where 𝑥 ∈ ℝ𝑛 is a vector of states of the drone, 𝑢 ∈ ℝ𝑚 is a

vector of inputs to the drone , and 𝑟 ∈ ℝ𝑛 is a bounded

command signal for the drone. In our case, 𝑟 represents the

desired trajectory, attitude, and velocities of the drone at a

particular time 𝑡. It should be noted that, in classical control,

𝐾𝑥 and 𝐾𝑟 would be time-invariant. With MRAC, however,

these gains must evolve over time to compensate for the un-

modeled dynamics from the added mass. Because this added

mass may affect multiple states (for example, altitude and

pitch), this system requires a full-state adaptive controller.

 The controller developed in this work was based off

the direct model reference adaptive controller detailed by

Lavretsky et al [1]. A high level block diagram of the control

scheme is shown in Figure 1. To update 𝐾𝑥 and 𝐾𝑟 , a

reference model of the system is needed to compare the

actual drone performance to the desired closed-loop

dynamics. The reference model takes the following form:

 �̇�𝑟𝑒𝑓 = 𝐴𝑟𝑒𝑓𝑥𝑟𝑒𝑓 + 𝐵𝑟𝑒𝑓𝑟 (3)

 𝐴𝑟𝑒𝑓 = 𝐴𝑚 − 𝐵𝑚𝐾0 (4)

𝐴𝑟𝑒𝑓 represents the linearized desired closed-loop dynamics

of the system. 𝐴𝑚 and 𝐵𝑚 correspond to the reference model

plant. For this application, we assume that there is no

uncertainty associated with the input commands, so 𝐵𝑚 ≈
𝐵 . 𝐾0 is the controller gain matrix found using classical

controller design methods such that when there is no added

mass on the drone, 𝑢(𝑡) = −𝐾0𝑥(𝑡). 𝑥𝑟𝑒𝑓(𝑡) is the estimate

for the system’s states based on this given reference model.

 For a given reference signal 𝑟(𝑡) , the reference

model is simulated alongside the actual system, allowing

𝑥𝑟𝑒𝑓 and 𝑥 to be compared as the system evolves. Lavretsky

et al derives the multi-input, multi-output (MIMO) adaptive

controller using Lyapunov stability arguments subject to the

constraints that 𝐴 + 𝐵𝐾𝑥
𝑇 = 𝐴𝑟𝑒𝑓 and 𝐵𝐾𝑟

𝑇 = 𝐵𝑟𝑒𝑓 . The

result of the analysis is the following adaptation laws for the

controller gains 𝐾𝑥 and 𝐾𝑟:

 �̇�𝑥 = −Γ𝑥𝑥𝑒𝑇𝑃𝐵 (5)

 �̇�𝑟 = −Γ𝑟𝑟𝑒𝑇𝑃𝐵 (6)

In the above equations, P solves the algebraic Lyapunov

equation 𝑃𝐴𝑟𝑒𝑓 + 𝐴𝑟𝑒𝑓
𝑇 𝑃 = −𝑄 (for some positive definite

matrix Q) and 𝑒 = 𝑥 − 𝑥𝑟𝑒𝑓 represents the error between the

actual system’s states and the simulated reference model’s

states. It is clear that as 𝑒 → 0, the above adaptation laws

will go to zero and the controller gains will remain constant.

Γ𝑥 and Γ𝑟 represent adaptation gains and are analogous to

how quickly 𝐾𝑥 and 𝐾𝑟 (respectively) should adapt to

modeling errors. With this MRAC scheme, there are four

matrices which can be tuned to achieve desired results: 𝐴𝑟𝑒𝑓

(the desired closed-loop dynamics), Γ𝑥, Γ𝑟, and Q.

III. SIMULINK IMPLEMENTATION

A. MRAC Implementation for Hardware

 Once the MRAC theory was understood from the

derivation by Lavretsky et al, the adaptive controller needed

to be implemented in software with the eventual goal of

being deployed to the Parrot Mambo hardware. The adaptive

controller required the following parameters to be defined:

a) 𝑟(𝑡)

b) 𝐴𝑟𝑒𝑓, 𝐵, and 𝐾0

c) Γ𝑥, Γ𝑟, and Q

Fig. 1. Block diagram of a model reference adaptive control scheme as developed by Lavretsky et al [1].

The reference model is simulated separately from the real drone dynamics and is used to update controller gains

with an adaptation mechanism.

𝑟(𝑡) is defined by the desired task. For the initial simulations

discussed in this paper, 𝑟(𝑡) consisted of a pulse maneuver

for the drone altitude and was zero for all other states. For

the items in (b), the drone dynamics were modeled using the

“complexDrone” model from class assignments. The

dynamics were then linearized around a hover point of 1

meter above the ground. 𝐾0 was defined to be the pole

placement controller developed in lab 2 corresponding to the

fast closed-loop hover dynamics.

 The items in (c) were design parameters to be

chosen. These matrices were initially chosen to be diagonal

matrices since, to first approximation, each element on the

diagonal corresponds to the adaptation rate of a different

state. Using diagonal matrices eliminates complexities

associated with tuning coupled adaptation rates. The exact

values for these matrices are discussed in later sections with

simulation results. Once these matrices were chosen, the

matrix P could be calculated using the “lyap” function in

MATLAB, which solved the algebraic Lyapunov equation

automatically.
 The Simulink block diagram for the implemented

adaptive controller is shown in Figure 2. An important note
is that because controller gains generally operate on
linearized systems to yield system inputs about a
linearization point, 𝑥 and 𝑥𝑟𝑒𝑓 in the previously discussed

theory correspond to state errors with respect to the hover
(linearization) point. As a result, the reference command
𝑟(𝑡) is subtracted from actual and reference model states
before passing the values to the controller. Because this
controller also needs to be deployable to the drone, all
operators (such as the integrator block) needed to be in
discrete-time. The controller gains 𝐾𝑥 and 𝐾𝑟 were

initialized such that 𝐾𝑥(𝑡 = 0) = −𝐾0
𝑇 and 𝐾𝑟(𝑡 = 0) =

0𝑛𝑥𝑚 to ensure that 𝑢(𝑡 = 0) = −𝐾0𝑥(𝑡 = 0). Therefore, if
the drone experiences no added mass, the controller gains
will experience little adaptation and 𝑢(𝑡) ≈ −𝐾0𝑥(𝑡) for all
time 𝑡.

B. Reference Model in Discrete Time

 This MRAC scheme required that the drone

dynamics (without added mass) be simulated in parallel with

the measurement of the drone’s actual dynamics in order to

adapt the controller gains. In developing this reference

model, it was necessary for the output to be reasonably

accurate while also being simulated in discrete time to

ensure compatibility with the drone hardware. The first

option considered for the reference model was a linear

system using the 𝐴𝑟𝑒𝑓 matrix generated from the

linearization of the “complexDrone” model. While this

system can easily be implemented in discrete time, the

response too easily diverges if the drone’s state becomes too

far from the linearization point. The second option was to

use the “complexDrone” nonlinear model. While the non-

linear dynamics provide more accuracy far from the

linearization point, the MATLAB s-function

“quadrotor_dynamics” (used by the “complexDrone”

model) simulates the dynamics in continuous time. While

attempts were made to discretize this s-function output, the

simulations became unstable.

 To overcome these problems, a reference model

subsystem was built using the functions in the

“quadrotor_dynamics” s-function. One function calculated

the system derivatives, and another function performed a

Fig. 2. Simulink diagram of the implemented model reference adaptive controller. Discrete time integration blocks are

used to allow the controller to be used both in simulation and onboard the drone.

Fig. 3. Simulink subsystem of the discretized drone dynamics

(derived from the “quadrotor_dynamics” s-function from Parrot).

The first MATLAB function calculates derivatives which are then

passed to an integration block. The states undergo a coordinate

transformation before eing outputted to the controller.

coordinate transformation for the drone states.

Mathematically:

 �̇�′ = 𝑓(𝑥, 𝑢) (7)

 𝑥 = 𝑔(𝑥′) (8)

 The above equations were each implemented as

MATLAB function blocks in Simulink. The output of

Equation 7 was integrated using a discrete-time integrator

block and then passed as the input for Equation 8. Figure 3

shows the Simulink model corresponding to the equations

for the drone dynamics.

 The full reference model block is shown in Figure

4. It was developed from the “complexDrone” model and

includes the discretized drone dynamics from Figure 3.

Figure 4 also shows an additional modification (the green

subsystem block) from the “complexDrone” model to

account for takeoff. During the takeoff time, the commanded

thrust force is set to be a constant value rather than

determined by the controller due to the unreliability of the

sensors at low altitude. In the drone hardware, the takeoff

time is automatically implemented. However, if the

reference model does not also account for this command,

then the reference model dynamics will be inaccurate

compared to the actual drone dynamics. This takeoff block

was copied into the reference model to allow deployment

and use onboard the drone.

IV. SIMULATION RESULTS

 To help with initial gain tuning and ensure stability

of the drone, the adaptive controller was simulated using the

“quadrotor_dynamics” function as well as the animation in

the asbQuadcopter project. The continuous time simulation

with the “quadrotor_dynamics” function was developed by

a colleague and is not discussed in detail here.
 After much gain tuning, it was found that the

following gains produced a stable response with adequately
fast adaption: Γ𝑟 = 0.0001 × 𝐼𝑛×𝑛, 𝑄 = 0.01 × 𝐼𝑛×𝑛, and
Γ𝑥 = 0.0001 × 𝐼𝑛×𝑛 except for the third diagonal element

(corresponding to the altitude) which had a value of 0.001.
The response of the adaptive controller (compared to the
reference model dynamics) is shown in Figure 5. In this
simulation, the actual drone mass was changed from 0.068 kg
to 0.200 kg, while the reference model mass remained at
0.068 kg. It is clear that with added mass, the controller is
able to stabilize the drone reasonably well and the actual
response closely follows the desired closed-loop dynamics.
There is notable (but slight) overshoot near the step changes
in the pulse maneuver that, with further gain tuning, could
potentially be eliminated.

V. CONCLUSIONS AND FUTURE WORK

 In this work, a model reference adaptive controller

(derived by Lavretsky et al) was developed and implemented

for a Parrot Mambo minidrone in order to control for

(unknown) added mass or changes in mass. The theoretical

basis for a model reference adaptive controller was

discussed along with design and implementation

considerations that follow from it. Appropriate simplifying

assumptions for the MRAC theory were also detailed.

Fig. 4. Simulink model of the full reference model. It consists of a pole-placement controller which calculates an input

to pass to the drone dynamics. The green block in the center of the model accounts for any takeoff time required when

the drone is deployed to the Parrot drone.

Fig. 5. A plot from simulation of the adaptive controller showing

the altitude response of the drone. The yellow line represents the

desired closed-loop dynamics and the blue line represents the

response of the drone with the adaptive controller.

Solutions to hardware implementation issues associated with

the reference model were presented. These solutions

involved a discretization of the nonlinear dynamics of the

“quadrotor_dynamics” and accounting for takeoff time

when the controller is deployed to hardware. Finally, the

controller was implemented in a simulation in which the

simulated drone’s mass was increased by nearly 3 times. The

simulation showed a stable response of the adaptive

controller, while also demonstrating areas for future

improvement related to reducing overshoot.

 Results from experiments involving the physical

drone were not shown in this paper and will be discussed by

my colleague in further detail. However, both the real-life

and simulation results reveal that the transient response of

the drone dynamics require improvement to eliminate

overshoot, which indicates further need to refine the

adaptive controller model or tune adaptation gains. In

addition, this work primarily focused on adaptive control for

altitude and attitude control. Future work may focus on

incorporating planar motion of the drone in order to achieve

stable lateral movement in addition to stability in hover.

REFERENCES

[1] Lavretsky, E., and Wise, K., 2013, Robust and Adaptive Control

With Aerospace Applications, Springer.

